

Lagopus User Guide

Lagopus is a distributed fuzzing platform. It allows you to run multiple
fuzzing jobs across multiple machines.

Contents:

	About
	Architecture

	Installation
	Guide

	Usage
	Dashboard

	Jobs

	Crashes

	API

Indices and tables

	Index

	Module Index

	Search Page

About

Lagopus is a distributed fuzzing platform. It allows you to run multiple
fuzzing jobs across multiple machines.

Lagopus handles all lifecycle management for fuzzing workloads, including
creating, distributing, running, and monitoring fuzzing jobs. It automatically
analyzes crashes, minimizes test cases, and manages corpuses. It supports
libFuzzer [https://llvm.org/docs/LibFuzzer.html] and AFLplusplus [https://github.com/AFLplusplus/AFLplusplus] out of the box, but can be made
to support any fuzzing driver or framework.

Lagopus intends to be an alternative to ClusterFuzz with a focus on a more
modular codebase, better hackability and first class support for on-prem
clusters and single-node deployments.

See also

Installation

Architecture

Lagopus is built on Kubernetes (k8s). The core application runs as a set of k8s
containers. Fuzzing jobs run in additional containers created by the core.
Kubernetes handles cluster and resource management, job distribution, container
lifecycle, and to some extent storage. Lagopus has four main components, each
corresponding to one container image. There is one instance of each image in a
Lagopus deployment, except for fuzzing containers, which are created on demand
to run jobs.

The first component is lagopus-server. This is more or less the application
core. It is a Flask app that implements the REST API used to interact with
Lagopus. It talks to the k8s API to manage cluster resources, primarily to
spin up containers for running fuzzing jobs. It is stateless; application state
is stored in lagopus-db.

The second is lagopus-db, which is just a containerized MySQL instance that
provides the application database. Details on jobs, crashes, corpuses, etc. are
all stored here.

The third is lagopus-scanner. When fuzzing jobs complete, they dump their
artifacts - minimized corpuses, crashing inputs, and logs - to the Lagopus
shared storage area for later use. This container periodically scans that
directory looking for recently finished jobs in order to post-process them and
import their results into the database. This container is also stateless, and
just runs a Python script that does the importing.

The fourth is lagopus-fuzzer. This is an Ubuntu 18.04 container image
preloaded with a collection of fuzzing utilities. Each fuzzing job is run in a
new instance of this image. In the future, support for custom containers should
allow a choice of platforms.

Here’s a diagram that probably won’t make much sense, but at least provides
some overview of how the pieces fit together:

[image: _images/lagopus-architecture.png]

Why Kubernetes?

Kubernetes was chosen not out of any particular desire to use microservices,
but because it provides both container management and a distributed systems
platform, both of which Lagopus needs. It was decided early on that Lagopus
should not try to roll its own versions of these two things.

Unfortunately, k8s has something of a reputation for being very complex and
unwieldy, and to some extent this is true. It does much more than Lagopus needs
it to do. Fortunately the k8s setup required to run Lagopus is relatively
minimal; a cluster, some sysctls on the nodes, and an NFS volume.

Installation

How to install Lagopus!

Note

Installing Lagopus is rather difficult right now, since it’s still very much
a work in progress. You will probably have a hard time unless you already
have some operational experience with Kubernetes. This setup process will be
improved prior to the initial release to make it easier and more accessible.

The installation process for Lagopus is roughly:

	Set up a Kubernetes cluster

	Configure the cluster nodes; some sysctl’s need to be set on the nodes
for performance reasons, and k8s doesn’t have the ability to do that itself
right now. The necessary changes can be done with Ansible to make it easier.

	Create an NFS share accessible by the cluster

	Clone the Lagopus repository

	Run helm install charts/lagopus

Presently, the Docker images are stored on my personal Docker Hub instance, but
those will be moved to something more offical before the initial release.

Guide

The steps below assume you are using Ubuntu 18.04 LTS on your cluster nodes.
More generic instructions should be available prior to the initial release.

NFS

lagopus uses NFS as its storage system. This allows you to keep lagopus storage
on any device you want; it doesn’t even have to be on a cluster node. As long
as the NFS server is accessible from the cluster you can use it.

This section describes how to set up an NFS share on Ubuntu 18.04. If you want
to use some other system, that’s fine; there are lots of tutorials on how to
set up NFS shares online, it’s pretty easy.

	Pick somewhere to host NFS on - the master node is okay for this and usually
easiest, but any cluster-accessible machine will work.

Warning

This node should have lots of disk space, at least 200gb for
production deployments; more depending on how heavy your usage is.
Presently Lagopus doesn’t do any management of disk resources itself,
which is a known limitation; for now, just give yourself as much storage
headroom as you can. If you’re just trying it out, 10gb or so should be
sufficient depending on your job sizes.

	Install NFS:

sudo apt update && sudo apt install -y nfs-kernel-server

	Make a share directory:

sudo mkdir -p /opt/lagopus_storage
sudo chown nobody:nogroup /opt/lagopus_storage

	Export this share to NFS:

echo "/opt/lagopus_storage *(rw,sync,no_subtree_check,no_root_squash)" >> /etc/exports
systemctl restart nfs-server

	Open firewall to allow NFS, if necessary

	Verify that NFS is working by trying to access it from a cluster node:

apt install -y nfs-common && showmount -e <nfs_host>

If it’s working, you should see:

Export list for <nfs_host>:
/opt/lagopus_storage ::

Take note of the hostname or IP address of the NFS server, and the share path.
You will need to specify them when installing lagopus.

Cluster Configuration

This section is broken down by platform. Each k8s implementation has its
quirks. If you’re setting up a new cluster I recommend k3s [https://k3s.io/]. If you want to test locally I recommend kind [https://kind.sigs.k8s.io/] or minikube [https://kubernetes.io/docs/tasks/tools/install-minikube/]. microk8s [https://microk8s.io/]. is also an acceptable choice, but you have to deal
with snaps, which have many problems. Don’t use microk8s if you have ZFS
anywhere in your cluster, your troubles will be endless.

Basic node setup

This section assumes you already have a cluster. It is agnostic to whatever
implementation of k8s you choose.

Each node in the cluster needs a few tweaks to support lagopus. The necessary
changes are:

	Install NFS support

	Normalize core dumps

	Disable apport (Ubuntu only)

	Disable swap

	Allow the kubelet to provision static cpu resources
(--cpu-manager-policy=static)

	Set kernel CPU scheduler to performance mode

The last 3 are required for AFL to work as a fuzzing driver.

On each node, do the following:

	Install NFS support

This is OS-dependent. For example, on Ubuntu:

apt update
apt install -y nfs-common

	Normalize core dumps:

echo "kernel.core_pattern=core" >> /etc/sysctl.conf
sysctl -p

	If on Ubuntu, the previous setting will be overwritten by Apport each boot.
You need to disable Apport:

systemctl stop apport
systemctl disable apport

	Next, disable swap to prevent fuzzer memory from being swapped, which hurts
performance:

swapoff -a

	Set the CPU governor to performance:

cd /sys/devices/system/cpu; echo performance | tee cpu*/cpufreq/scaling_governor

	Set the following kubelet parameters on each of your nodes and restart
kubelet:

--cpu-manager-policy=static
--kube-reserved="cpu=200m,memory=512Mi"

The first option is absolutely necessary to allow fuzzing jobs to bind to
CPUs (required by AFLplusplus). The second one reserves some resources
for the kubelet process itself, so that fuzzing jobs cannot starve
kubelet.

	microk8s:

Add the above lines to /var/snap/microk8s/current/args/kubelet, then
run the following to apply them immediately:

rm /var/snap/microk8s/common/var/lib/kubelet/cpu_manager_state
systemctl reset-failed snap.microk8s.daemon-kubelet
systemctl restart snap.microk8s.daemon-kubelet

If the service fails, check journalctl -u snap.microk8s.daemon-kubelet
for debugging logs.

On the master node (or the host when using kind) you need to install Helm [https://github.com/helm/helm]. Lagopus is packaged as a Helm Chart, so you
need Helm to install it.

Installing helm is easy; go here [https://github.com/helm/helm/releases],
download the latest 3.x release for your platform, extract the tarball and put
the helm binary in /usr/local/bin. If necessary, chmod +x
/usr/local/bin/helm.

kind

kind [https://kind.sigs.k8s.io/] is a nice option for running locally
without needing a physical cluster. kind spins up a cluster on your local
machine by running k8s inside of docker. It’s oriented towards proof-of-concept
and local deployments.

Follow the instructions on the kind homepage to install kind and create a
cluster. After creating a cluster, go through the steps in
Basic node setup.

In kind, you can log into the nodes as you would a docker container. Find
the container IDs of the cluster nodes with docker ps:

qlyoung@host ~> docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
98bae8548619 kindest/node:v1.18.2 "/usr/local/bin/entr…" 2 hours ago Up 2 hours 127.0.0.1:39245->6443/tcp kind-control-plane

After running through the Basic node setup, you need to get the LAN IP
of the kind master node. This is the IP that lagopus will expose its web
interface on. Log into the master node, then:

ip addr show eth0

It should be the first address. For example, on my kind cluster:

ip addr show eth0
30: eth0@if31: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
 link/ether 02:42:ac:13:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 172.19.0.2/16 brd 172.19.255.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fc00:f853:ccd:e793::2/64 scope global nodad
 valid_lft forever preferred_lft forever
 inet6 fe80::42:acff:fe13:2/64 scope link
 valid_lft forever preferred_lft forever

The address is 172.19.0.2. You should verify that this address is reachable
from your host by pinging it. Note this address; this is what you’ll use as
lagopusIP when installing lagopus.

At this point you can skip to Installing.

k3s

Go through the steps in Basic node setup.

TODO: document how to enable static CPU scheduling for k3s kubelets

microk8s

If you already have a cluster set up, here is an Ansible playbook to do all of
the steps described if your nodes are running microk8s on Ubuntu 18.04. Change
qlyoung to any root-privileged account.

- hosts: fuzzers
 vars:
 fuzzing_user: qlyoung
 remote_user: {{ fuzzing_user }}
 become: yes
 become_method: sudo
 gather_facts: no
 pre_tasks:
 - name: 'install python2'
 raw: sudo apt-get -y install python
 tasks:
 - name: install-microk8s
 command: snap install microk8s --classic
 - name: microk8s-perms
 command: sudo usermod -a -G microk8s {{ fuzzing_user }}
 - name: microk8s-enable-dns
 command: microk8s.enable dns
 - name: disable-apport
 shell: |
 systemctl disable apport
 systemctl stop apport
 ignore_errors: yes
 - name: set-kernel-core-pattern
 shell: echo 'kernel.core_pattern=core' >> /etc/sysctl.conf && sysctl -p
 - name: set-kubelet-resources
 shell: |
 echo '--cpu-manager-policy=static' >> /var/snap/microk8s/current/args/kubelet
 echo '--kube-reserved="cpu=200m,memory=512Mi"' >> /var/snap/microk8s/current/args/kubelet
 rm /var/snap/microk8s/common/var/lib/kubelet/cpu_manager_state
 systemctl reset-failed snap.microk8s.daemon-kubelet
 systemctl restart snap.microk8s.daemon-kubelet
 - name: install-nfs
 command: apt install -y nfs-common
 - name: set-kernel-scheduler-performance
 command: cd /sys/devices/system/cpu; echo performance | tee cpu*/cpufreq/scaling_governor
 ignore_errors: yes

If the service fails, check journalctl -u snap.microk8s.daemon-kubelet
for debugging logs.

Building

This is for development purposes, you do not need to do this if you just want
to deploy the latest release.

cd into the repository. Make your changes. Open build.sh and edit the
repository information to point at your own Docker repository. Then run
build.sh to build and push the images.

After that you need to replace all the hardcoded references to my repo in the
Helm templates with yours (look for qlyoung in
chart/lagopus/templates).

Installing

To install Lagopus onto the cluster, clone the repository, cd into it,
then:

helm install --set lagopusStorageServer=<nfs_host>,lagopusStoragePath=<nfs_share_path>,lagopusIP=<prefix> <release_name> ./chart/lagopus

where:

	nfs_host is the hostname of your nfs server

	nfs_share_path is the path of the share you want lagopus to use as its
storage

	prefix is an address range from which to select the IP address to host
the lagopus web interface and API on. If you want to use a specific address,
pass it as a /32 prefix (e.g. 1.2.3.4/32). This address should be
directly connected relative to the external cluster network; for instance, if
your cluster machines have addresses in 172.19.0.0/24, a reasonable choice
might be 172.19.0.2/32. In practice, you probably want to use the
“public” IP of the master k8s node.

Lagopus will select one of the IPs out of the range you configured during
installation to expose the web interface. To get this address:

kubectl get service | grep lagopus-server | tr -s ' ' | cut -d' ' -f4

Supposing the IP address is A.B.C.D, you can access the web interface by
navigating to http://A.B.C.D/ in your browser. Lagopus does not yet support
TLS.

Uninstalling

To remove Lagopus from the cluster, uninstall it with Helm.

::

helm uninstall charts/lagopus

Usage

Note

TODO: add screenshots

The Lagopus user interface is exposed as a web application. It is served on
port 80 at the IP address you configured during the installation process. There are several components, each available on a different
part of the web interface.

The following pages are each linked in the sidebar of the web interface.

Dashboard

The dashboard is the home page of the web interface. It has a list of jobs that
have been submitted to Lagopus. This list is sorted by recency and includes
both running and completed (or failed) jobs. Each job name in this list is
linked to the details page for that job, which contains monitoring and
statistics information, a summary of fuzzing results, and some controls
(presently just a “Kill” button to stop the job).

At the top of the page there are a few cards containing summary information
about the Lagopus deployment, including the current number of online nodes as
reported by Kubernetes and the number of running jobs.

To the right of the summary information is the “New Job” button that is used to
create new fuzzing jobs.

Jobs

Lagopus is designed around the concept of a Job. A job is an individual
fuzzing session. Associated with a job are resources such as the containers
used to run it, the input zip defining it, its results, its location on the
storage volume, and so on.

Each Job has a page in the interface that provides all information about it.
This includes its current status, fine-grained statistics, progress information
for running jobs, a table of any discovered crashes, code coverage information
(not yet implemented), its resource limits, and what node it is running on.
This page is accessible by clicking on the name of the job from the Dashboard.

Creating Jobs

Lagopus accepts job definitions in a format very similar to ClusterFuzz [https://github.com/google/clusterfuzz]. It wants a zip archive with the
following structure:

job.zip
├── corpus
├── provision.sh
├── target
└── target.conf

Where:

	corpus is a directory containing a fuzzing corpus; it may be empty, but
must be present

	provision.sh is a provisioning script used to setup the environment for
the target (more on this below)

	target is your target binary

	target.conf is a config file for
afl-multicore [https://gitlab.com/rc0r/afl-utils]; this is only necessary
when the job type is afl. libFuzzer jobs do not use this.

In addition to these files, you can include anything else you want in this zip
archive. This allows you to include e.g. config files or shared libraries
needed by the target.

The provision script allows you to customize the container used to run the job.
It will probably be necessary for most targets. This script is run before any
fuzzing takes place. Use it to install config files, packages, shared libraries
and anything else needed to run the target. Remember that the fuzzing container
is an Ubuntu 18.04 image, so you have access to all of Ubuntu’s apt
repositories and can safely install any packages you need. Set it up however
you want; if you want to download some file, build some program from source,
delete system directories, whatever you want, feel free. Just don’t delete
/workdir, /<jobname>, or any of the fuzzing tools ;).

Crashes

The main goal of any fuzzing system is to find bugs in target programs. When a
fuzzing job finds a crash, Lagopus automatically collects information about the
crash and imports it into its crash database. The contents of this database are
accessible via the Crashes page.

Each entry in the database contains the name of the job it is associated with
and the exit code of the target when run with the crashing input. Lagopus also
tries to describe the type of the crash by looking at the output of the program
when run with the crashing input. For example, Lagopus understands
ASAN/MSAN/TSAN/UBSAN output and will store the crash type reported by the
sanitizer (e.g. buffer overflow, race condition, etc.) in the Type field.

Note

Crash analysis is performed with slightly modified code lifted from
ClusterFuzz, so credit goes to Google for that piece.

The output of the program when run with the crashing input is available in the
Backtrace column.

Each crash table entry also has a link to the fuzzing input that caused the
crash in the “Sample” column. Clicking this link downloads the input. This is
useful for local debugging.

Note

Depending on the target and fuzzer, the backtrace may show a successful run
and the sample provided for download may not reproduce the crash. This
typically occurs with libFuzzer targets that accumulate state; the crash may
only reproduce when 100 inputs are run in a particular sequence, building up
the state necessary to create the error condition within the target. After
finding a crashing input, Lagopus attempts to re-run the target with the
input to generate a clean backtrace for analysis. If it doesn’t cause a
crash, Lagopus will fall back to scraping the job logs to get the backtrace,
if available. When this happens, the exit code is logged as 101.

If you want to see crashes only for a particular job, go to that job’s page and
click the “Crashes” tab.

API

Lagopus exposes an HTTP REST API. The web interface controls Lagopus solely
through this API to ensure that it stays up to date and covers all public
functionality. The API link in the sidebar brings up Swagger-generated API
docs. Each endpoint has a documentation blurb associated with it that explains
the purpose and usage of the endpoint.

The API provides programmatic access to any task achievable via the web
interface.

Because Lagopus itself has no facilities for recurring jobs, CI integration,
email reporting, and other desirable features, the goal of the API is to allow
as much flexibility and extensibility as possible. For instance, if you want to
kick off a fuzz job after each build of your project in CI, you can simply
build a job zip as one of your CI artifacts and POST it to the job creation
endpoint.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Lagopus User Guide

 		
 About

 		
 Architecture

 		
 Why Kubernetes?

 		
 Installation

 		
 Guide

 		
 NFS

 		
 Cluster Configuration

 		
 Building

 		
 Installing

 		
 Uninstalling

 		
 Usage

 		
 Dashboard

 		
 Jobs

 		
 Creating Jobs

 		
 Crashes

 		
 API

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/favicon-32x32.png

_static/file.png

_static/up-pressed.png

_static/comment-bright.png

_images/lagopus-architecture.png
MetallB

lagopus-scanner

lagopus-server

Web app
+
API server
T
Kubernetes API broker

/

lagopus-db (mysal)

~

Influxdb

PersistentVolume

Kubernetes API server

Download job

Validate job

Minimize

Evaluate crashes

fuzzer

fuzzer

fuzzer

Upload results

_static/ajax-loader.gif

_static/comment-close.png

